原文链接:RC4、Base64魔改看雪CTF-变形金刚学习笔记
前言
最近在研究某某app的数据库,发现自己在so层的调试比较薄弱,专门找了看雪的CTF-变形金刚来学习,也拜读了几位大佬的文章。希望在用ida调试so方面有所突破。
工具准备
ida7.0
Transformers.apk idea jadx frida 小米4root手机(android6.0)
app分析目标
为了熟悉该app,先介绍一下大神分析后的结果。
输入错误密码截图
比如输入密码是:12345678,会提示错误信息:Transformers:error
输入正确密码截图
输入密码(长度16个字符)是:fu0kzHp2aqtZAuY6,会提示错误信息:Transformers:flag{android4-9}。
静态分析-java
把Transformers.apk拖入jadx
障眼法1:该app设计作者采用了障眼法,很容易欺骗分析人员,让我们认为OnClick的回调处理逻辑在MainActivity中。
障眼法2:在MainActivity的OnCreate中欺骗代码注册OnClick回调。主要原理是利用Activity的onStart事件会晚与OnCreate事件,从而实现在OnStart中注册的OnClick回调覆盖了OnCreate中注册的回调。
Activity基类的onStart才是真正注册OnClick回调的地方:
Base64解码图
为了方便理解eq中涉及的魔改的Base64编码,这里先贴上一直Base64解码的草稿图。
下图是Base64编码4个字符'{6*的解码草稿图,画的不是很好,主要是方便我自己理解写解码Base64的逻辑代码。
它是用64个可打印字符表示二进制所有数据方法。由于2的6次方等于64,所以可以用每6个位元为一个单元,对应某个可打印字符。我们知道三个字节有24个位元,就可以刚好对应于4个Base64单元,即3个字节需要用4个Base64的可打印字符来表示。
静态分析与动态调试 跟踪liboo000oo.so
这里将分3个关键步骤:
1. JNI_OnLoad分析动态注册eq对应的函数sub_784,稍后再详细介绍。2. fini_array部分跟踪,主要是eq函数用到的一下基础数据,比如Base64编码表、RC4加密算法用到的key初始值,之后它会通过一系列异或处理算出真正的密钥key。也稍后再详细介绍。3. eq函数的算法跟踪分析。
这里先列一下分析结果:
- JNI_onLoad部分==========
- eq是由sub_784动态注册
-
- ini_array部分==========
-
- #解码36长度字符串byte_4020:
- byte_4020 =650f909c-7217-3647-9331-c82df8b98e98+0x00(结束符)
-
-
- #解码Base64为的64+1个编码字符byte_4050=
- base64Chars = byte_4050 =!:#$%&()+-*/`~_[]{}?<>,.@^abcdefghijklmnopqrstuvwxyz0123456789\';+0x00(结束符)
-
- #app伪装java类的名称byte_40A0:
- className_Sign= android/support/v7/app/AppCompiatActivity +0x00(结束符)
-
-
- sub_784部分============
-
- 获取RC4的密钥算法============:
- v5=算法01 = 删除(byte_4040中的"-") =650f909c721736479331c82df8b98e98
- v4=算法02 =删除byte_4020中的”-“后,特殊运算又加上”-“符号=89e89b8f-d28c-1339-7463-7127c909f056
-
- 自定义算法03==========
- v6=v17=自定义算法03 = 特殊算法处理后 =36f36b3c-a03e-4996-8759-8408e626c215
- 算法参数01:v4
- 算法参数02:unk_23DE(10位长度) =2409715836
- 算法参数03:unk_23D8(16位长度)=dbeafc2409715836
-
- RC4魔改部分====== (已经逆向算法)
- RC4第1步:v48:拷贝&unk_B4D863E8中的256个字符到v48(应视是RC4算法的魔改数据)
- RC4第2步:v49:计算RC4 的临时256自己T向量,公式:iK[i]=(byte)aKey.charAt((i % aKey.length()));
- RC4第3步:V48状态向量S进行置换操作V48
- RC4第4步:RC4产生密钥流iOutputChar,然后return new String(iOutputChar)
- v27 =33 ,即v6[3];
-
- RC4第5步:产生密钥流--其他还结合魔改Base64运算
- 分配输入密码对应的base64字节的存储空间
- Base64算法的字典
-
- Base64魔改部分======(已经逆向算法)
- Base64的字典部分-64个字符+1个结束符
- 每4个字符中第0个与0x6异或,第0个与0xF异或
- switch (i%4){
- case 0:
- base64char = (char) (iAscii ^0x07);
- break;
-
- case 2:
- base64char = (char) (iAscii ^0xF);
- break;
- default:
- base64char =encodeChars[i];
-
- }
复制代码
NI_OnLoad 代码逻辑分析RegisterNatives
1. 搜索JNI_OnLoad,双击进入函数体
2. 导入Jni.h文件。菜单路径:ida/File/Load file/Parse C header file
3. 修改参数类型为_JavaVM
4. 按g快捷键直接跳转到0x4014
off_4010即可看到注册的函数。
找到eq注册对应的sub_784函数:
当然frida的hook_art_so_register.js脚本快速定位eq对应sub_784。
该脚本通过hook art.so 的register函数,打印动态注册的地址:
- //调用方式==测试ok
- frida -U --no-pause -f package_name -l hook_art_so_register.js
复制代码 或直接在fini_array初始化数据中可以看到。
跟踪.init_array
另外根据so文件的加载流程应该是先加载init_array,然后是JNI_OnLoad
ida 中ctrl+s 进入init_array,会先执行.datadiv_decode5009363700628197108,其实就是通过一些运算得到一些初始化数据。
init_array
按f5 采用伪代码方式查看datadiv_decode5009363700628197108,根据得到一些数据。
1. 解码36长度字符串byte_4020:650f909c-7217-3647-9331-c82df8b98e98+0x00(结束符)
2. 魔改Base64编码的table表,为的64+1个编码字符byte_4050= !:#$%&()+-*/`~_[]{}?<>,.@^abcdefghijklmnopqrstuvwxyz0123456789\';+0x00(结束符)
eq函数的分析 (即sub_784函数)
ida定位到sub_784,修改参数类型,并做了动态调试后,梳理sub_784的逻辑。
unk_23E8字符串(RC4魔改算法的初始化256个字符S状态向量)
unk_23E8字符串Base64的table 拷贝:
- unk_23E8=Sbox = [0xD7,0xDF,0x02,0xD4,0xFE,0x6F,0x53,0x3C,0x25,0x6C,0x99,0x97,0x06,0x56,0x8F,0xDE,0x40,0x11,0x64,0x07,0x36,0x15,0x70,0xCA,0x18,0x17,0x7D,0x6A,0xDB,0x13,0x30,0x37,0x29,0x60,0xE1,0x23,0x28,0x8A,0x50,0x8C,0xAC,0x2F,0x88,0x20,0x27,0x0F,0x7C,0x52,0xA2,0xAB,0xFC,0xA1,0xCC,0x21,0x14,0x1F,0xC2,0xB2,0x8B,0x2C,0xB0,0x3A,0x66,0x46,0x3D,0xBB,0x42,0xA5,0x0C,0x75,0x22,0xD8,0xC3,0x76,0x1E,0x83,0x74,0xF0,0xF6,0x1C,0x26,0xD1,0x4F,0x0B,0xFF,0x4C,0x4D,0xC1,0x87,0x03,0x5A,0xEE,0xA4,0x5D,0x9E,0xF4,0xC8,0x0D,0x62,0x63,0x3E,0x44,0x7B,0xA3,0x68,0x32,0x1B,0xAA,0x2D,0x05,0xF3,0xF7,0x16,0x61,0x94,0xE0,0xD0,0xD3,0x98,0x69,0x78,0xE9,0x0A,0x65,0x91,0x8E,0x35,0x85,0x7A,0x51,0x86,0x10,0x3F,0x7F,0x82,0xDD,0xB5,0x1A,0x95,0xE7,0x43,0xFD,0x9B,0x24,0x45,0xEF,0x92,0x5C,0xE4,0x96,0xA9,0x9C,0x55,0x89,0x9A,0xEA,0xF9,0x90,0x5F,0xB8,0x04,0x84,0xCF,0x67,0x93,0x00,0xA6,0x39,0xA8,0x4E,0x59,0x31,0x6B,0xAD,0x5E,0x5B,0x77,0xB1,0x54,0xDC,0x38,0x41,0xB6,0x47,0x9F,0x73,0xBA,0xF8,0xAE,0xC4,0xBE,0x34,0x01,0x4B,0x2A,0x8D,0xBD,0xC5,0xC6,0xE8,0xAF,0xC9,0xF5,0xCB,0xFB,0xCD,0x79,0xCE,0x12,0x71,0xD2,0xFA,0x09,0xD5,0xBC,0x58,0x19,0x80,0xDA,0x49,0x1D,0xE6,0x2E,0xE3,0x7E,0xB7,0x3B,0xB3,0xA0,0xB9,0xE5,0x57,0x6E,0xD9,0x08,0xEB,0xC7,0xED,0x81,0xF1,0xF2,0xBF,0xC0,0xA7,0x4A,0xD6,0x2B,0xB4,0x72,0x9D,0x0E,0x6D,0xEC,0x48,0xE2,0x33]
复制代码
byte_24E8指向的内容:
函数return前的逻辑:
v49字符串-RC4魔改的临时向量T:
最终是算出来Base64编码的v28_new_base64与v41的字符比较({9*8ga*l!Tn?@#fj'j$\g;;)
把sub_784业务逻辑直接采用在ida中注解的方式修订如下:
- int __fastcall sub_784(_JNIEnv *a1_env, int a2, void *a3_str_app_password)
- {
- size_t v3_4020_RC4_key_length; // r10
- unsigned __int8 *v4_4020_del_handle02; // r6
- _BYTE *v5_4020_del_hyphen_handle01; // r8
- _BYTE *v6_byte_4020_handle3; // r11
- int v7; // r0
- size_t v8; // r2
- char *v9; // r1
- int v10; // r3
- int v11_len; // r1
- unsigned int v12; // r2
- int v13; // r3
- int v14; // r0
- int v15_forJump_; // r4
- unsigned __int8 v16; // r0
- _BYTE *v17_4020_handle3_ptr; // r3
- _BYTE *v18_tmp_byte_move; // r5
- char *v19_v49_256_Rc4_T; // r4
- int v20; // r5
- int v21; // r1
- int v22; // r0
- signed int v23; // r1
- int v24_S; // r2
- size_t v25_app_password_length; // r0
- unsigned int v26_app_password_length; // r8
- unsigned int v27; // r5
- _BYTE *v28_new_base64; // r0
- int v29; // r3
- int v30; // r10
- unsigned int v31_pw_index; // r2
- int v32; // r12
- bool v33_isAppPW_index01; // zf
- _BYTE *v34_ret; // r1
- bool v35; // zf
- int v36; // r3
- int v37_tmp; // r1
- unsigned __int8 v38_char_needTodoBase64; // r11
- unsigned int v39; // lr
- char v40; // r1
- char *v41; // r2
- int v42; // t1
- unsigned int v44_new_base64_length; // [sp+4h] [bp-234h]
- unsigned int v45_by_app_password_length; // [sp+8h] [bp-230h]
- unsigned int v46; // [sp+10h] [bp-228h]
- char *s_char_app_password; // [sp+14h] [bp-224h]
- char v48_256_Rc4_S[256]; // [sp+18h] [bp-220h] RC4的S向量
- char v49_256_Rc4_T[256]; // [sp+118h] [bp-120h] RC4的T向量
- int v50; // [sp+218h] [bp-20h]
-
- s_char_app_password = (char *)a1_env->functions->GetStringUTFChars(&a1_env->functions, a3_str_app_password, 0);
- v3_4020_RC4_key_length = strlen(byte_4020); // 长度0x24,即36长度
- v4_4020_del_handle02 = (unsigned __int8 *)malloc(v3_4020_RC4_key_length);// byte_4020被删除"-"符号,再经过特殊处理,同时有添加回新的“-”符号
- // 新的结果:89e89b8f-d28c-1339-7463-7127c909f056
- v5_4020_del_hyphen_handle01 = malloc(v3_4020_RC4_key_length);// byte_4020中的内容删除“-” :650f909c721736479331c82df8b98e98
- v6_byte_4020_handle3 = malloc(v3_4020_RC4_key_length);
- _aeabi_memclr(v4_4020_del_handle02, v3_4020_RC4_key_length);
- _aeabi_memclr(v5_4020_del_hyphen_handle01, v3_4020_RC4_key_length);
- _aeabi_memclr(v6_byte_4020_handle3, v3_4020_RC4_key_length);
- if ( v3_4020_RC4_key_length )
- {
- v7 = 0;
- v8 = v3_4020_RC4_key_length;
- v9 = byte_4020; // 指向36个字符串长度,在调试.fini_array已经得到:650f909c-7217-3647-9331-c82df8b98e98
- do // 其实就是把数据byte_4020的asci码copy到v5中byte数组
- {
- v10 = (unsigned __int8)*v9++; // 取一个字符转为asci码
- if ( v10 != 45 ) // "-"的asci=45,其实就是删除“-”符号,复制byte_4020(包括“-”符号)
- v5_4020_del_hyphen_handle01[v7++] = v10;
- --v8; // 及长度减一
- }
- while ( v8 ); // 循环体结束后v5=删除(byte_4040中的"-") =650f909c721736479331c82df8b98e98
- // ===========================算法处理01
-
-
- if ( v7 >= 1 ) // v7 =0x20;即字符串32为长度,其实就是36位byte_4020删除“-”后的长度
- {
- v11_len = v7 - 1;
- v12 = -8; // 0xFFFFFFF8,调试>>结果发现这里应该不是-8,而是一个很大的数
-
-
- v13 = 0;
- v14 = 0;
-
- do
- {
- if ( (v13 | (v12 >> 2)) > 3 ) // v12>>2 = -2?后第一次=0x3FFFFFFE
- {
- v15_forJump_ = v14;
- }
- else
- {
- v15_forJump_ = v14 + 1;
- v4_4020_del_handle02[v14] = 45; // 其实就是“-”字符的asc码45
- }
- v16 = v5_4020_del_hyphen_handle01[v11_len--];// v5其实就是byte_4020删除了“-”符号后的:650f909c721736479331c82df8b98e98
- v13 += 0x40000000;
- v4_4020_del_handle02[v15_forJump_] = v16;
- ++v12;
- v14 = v15_forJump_ + 1; // 其实也就是跳过"-"
- }
- while ( v11_len != -1 ); // 该循环体计算v4的结果是:89e89b8f-d28c-1339-7463-7127c909f056
- // 处理逻辑是:byte_4020被删除"-"符号,再经过特殊处理,同时有添加回新的“-”符号
- // ===========================算法处理02
-
-
-
- if ( v15_forJump_ >= 0 ) // 第一次变量是0x23,即36-1
- {
- v17_4020_handle3_ptr = v6_byte_4020_handle3;// 初始是0x00,v17计算后指向RC4的key:36f36b3c-a03e-4996-8759-8408e626c215
- while ( 1 )
- {
- v18_tmp_byte_move = (_BYTE *)*v4_4020_del_handle02;// ascii的hex:第一次 =0x38(对应字符"8");第2次 =0x39(对应字符"9");就是v4逐个字节取出
- if ( (unsigned __int8)((_BYTE)v18_tmp_byte_move - 97) <= 5u )// ascii(97)='a';ascii(48)='0'
- break;
- if ( (unsigned __int8)((_BYTE)v18_tmp_byte_move - 48) <= 9u )
- {
- v18_tmp_byte_move = (char *)&unk_23DE + (_DWORD)v18_tmp_byte_move - 48;// unk_23DE(10位长度)指向:2409715836
- goto LABEL_18;
- }
- LABEL_19:
- *v17_4020_handle3_ptr++ = (_BYTE)v18_tmp_byte_move;// 存放到v17指向的地址
- --v14; // 本if语句中初始是0x24,即36
- ++v4_4020_del_handle02; // 移动v4指向的指针,逐个取出
- if ( !v14 ) // 如果为0退出循环体???
- // if语句内部的循环体;但还在if语句内
- goto LABEL_20;
- } // end for while ( 1 )
- //
-
- v18_tmp_byte_move = (char *)&unk_23D8 + (_DWORD)v18_tmp_byte_move - 97;// unk_23D8(16位长度)好像是什么密码指向:dbeafc2409715836
- LABEL_18:
- LOBYTE(v18_tmp_byte_move) = *v18_tmp_byte_move;// 这个是IDA的常用宏,相当于取变量的最低byte位来赋值
- goto LABEL_19;
- } // end if ( v15_forJump_ >= 0 )
- // ??????这个if语句里到底处理了哪些逻辑
- // 本if语句结束用于计算v6
- // 计算结束后
- // v6 = 36f36b3c-a03e-4996-8759-8408e626c215
- // v17 = v6的指针进行移动
- // v18 = v4的字节逐个取出。(会与unk_23D8的内容进行运算)
- // 涉及参数:
- // 1:v4,即算法1-2步骤后(byte_4020):去”-“后计算又重新加上”-“符号=89e89b8f-d28c-1339-7463-7127c909f056
- // 2:unk_23DE(10位长度)指向:2409715836
- // 3:unk_23D8(16位长度)指向:dbeafc2409715836
- // ===========================算法处理03--获取RC4的密钥
-
-
-
- } // end if ( v7 >= 1 )
- } // end for if ( v3_RC4_key_length ) 处理后得到key*v17(即v6) 是:36f36b3c-a03e-4996-8759-8408e626c215
- LABEL_20:
- _aeabi_memcpy8(v48_256_Rc4_S, &unk_23E8, 256);// 用于RC4魔改算法(魔改)-256字节初始化:
- // unk_23E8指向的是256个字符:-拷贝到v48
- // 256字符不会重复
- // bytes:0xD7 0xDF 0x02 0xD4 0xFE 0x6F 0x53 0x3C ....
- // chars:.....oS<%l...V....d.6.p.
- // R0 =v48地址=0xBEE74D38
- // =================算法处理04===RC4-01初始化256个字节的状态向量
- v19_v49_256_Rc4_T = v49_256_Rc4_T;
- v20 = 0;
- do
- {
- sub_D20(v20, v3_4020_RC4_key_length); // ???具体做了哪些工作需要跟进去看看
- v49_256_Rc4_T[v20++] = v6_byte_4020_handle3[v21];// 根据算出的key再转换临时向量T
- }
- while ( v20 != 256 ); // 运算v49的值--RC4魔改的另外一个256字节向量-临时向量T
- // 循环体算法是:
- // for (short i= 0;i<256;i++)//初始化S和T(根据密钥mkey)
- // {
- // iK[i]=(byte)aKey.charAt((i % aKey.length()));//i%密钥长度(取值范围为1-256);
- // }
- //
- // =================参数:RC4密钥长度,即base_4020长度
- // 循环体结束后===
- // v48:内容没有被修改
- // v49(只复制256字符) =36f36b3c-a03e-4996-8759-8408e626c21536f36b3c-a03e-4996-8759-8408e626c21536f36b3c-a03e-4996-8759-8408e626c21536f36b3c-a03e-4996-8759-8408e626c21536f36b3c-a03e-4996-8759-8408e626c21536f36b3c-a03e-4996-8759-8408e626c21536f36b3c-a03e-4996-8759-8408e626c21536f3
- // =================算法处理04-===RC4-02初始化256个字节的临时向量
- //
- //
- v22 = (unsigned __int8)(v49_256_Rc4_T[0] - 41);// #0x33(即51)-41=0xA(即10)
- // 正常的RC4这里是0;也就是说这里也被魔改了****
- v48_256_Rc4_S[0] = v48_256_Rc4_S[v22];
- v48_256_Rc4_S[v22] = -41;
- v23 = 1; // 正常的RC4这里是0;也就是说这里也被魔改了1;也就是第一个byte不处理***
- do // RC4向量--初始排列S
- {
- v24_S = (unsigned __int8)v48_256_Rc4_S[v23];
- v22 = (v22 + (unsigned __int8)v49_256_Rc4_T[v23] + v24_S) % 256;
- v48_256_Rc4_S[v23++] = v48_256_Rc4_S[v22];
- v48_256_Rc4_S[v22] = v24_S;
- }
- while ( v23 != 256 ); // =================算法处理04===RC-03===开始对状态向量S进行置换操作(用来打乱初始种子1)
- // 其实就是打乱v48
- // 魔改代码:
- //
- // j=10; //======注意=====正常这里是0,不过魔改的2019的CTF=10?????????
- // iS_48[0] =iS_48[j];//======注意=====这段是魔改零添加的
- // iS_48[j] = -41; //======注意=====这段是魔改零添加的
- //
- //
- // for (int i=1;i<255;i++)//初始排列for (int i=0;i<255;i++) //2019的CTF魔改for (int i=1;i<256;i++)
- // {
- // j=(j+iS_48[i]+iK_49[i]) % 256;
- // int temp = iS_48[i];
- // iS_48[i]=iS_48[j];
- // iS_48[j]=temp;
- // }
-
-
-
- v25_app_password_length = strlen(s_char_app_password);// 就是解密数组密码的字符串:"12345678".lenght =8
- v26_app_password_length = v25_app_password_length;
- v27 = (unsigned __int8)v6_byte_4020_handle3[3];// v27=0x33 =51
- v45_by_app_password_length = 8 * (3 - -3 * (v25_app_password_length / 3));
- v44_new_base64_length = v27 + v45_by_app_password_length / 6;
- v28_new_base64 = malloc(v44_new_base64_length + 1);// 分配新的base64需要使用的字节。
- // //==========Base64分配需要新的字节大小
-
-
-
- if ( v26_app_password_length ) // app输入的密码长度
- {
- v30 = 0;
- v31_pw_index = 0; // 循环体的index
- v32 = 0;
- v46 = v27;
- do
- {
- v30 = (v30 + 1) % 256; // // RC4 算法的产生密钥流循环体开始
- v37_tmp = (unsigned __int8)v48_256_Rc4_S[v30];
- v32 = (v32 + v37_tmp) % 256;
- v48_256_Rc4_S[v30] = v48_256_Rc4_S[v32];
- v48_256_Rc4_S[v32] = v37_tmp; // ==========刚刚重新分析到这里,苦逼呀
-
- v19_v49_256_Rc4_T = (char *)(unsigned __int8)v48_256_Rc4_S[v30];
- v38_char_needTodoBase64 = v48_256_Rc4_S[(unsigned __int8)(v37_tmp + (_BYTE)v19_v49_256_Rc4_T)] ^ s_char_app_password[v31_pw_index];//
- // ===========Base64内嵌在RC4的内部
- // 先线程一个RC4加密后的字符
- // 后面用这个字符进行Base64的解码操作
- // Base64魔改的算法:
- // 1:Base64 字典被替换
- // 2:Base最后以为“=”会被替换成“;”
- // 3: 对特定字符进行异或操作.每4个字符中第0个与0x6异或,第0个与0xF异或
- // switch (i%4){
- // case 0:
- // base64char = (char) (iAscii ^0x07);
- // break;
- //
- // case 2:
- // base64char = (char) (iAscii ^0xF);
- // break;
- // default:
- // base64char =encodeChars[i];
- //
- // }
-
-
- if ( v31_pw_index
- && (v29 = 2863311531u * (unsigned __int64)v31_pw_index >> 32, v39 = 3 * (v31_pw_index / 3), v39 != v31_pw_index) )//
- // 逗号运算符是指在C语言中,多个表达式可以用逗号分开,其中用逗号分开的表达式的值分别结算,但整个表达式的值是最后一个表达式的值。
- // 影响结果:
- // false:其实就是index/3(取摸)!=0
- // true: index/3 =0
- // v39:index可以是3的最大倍数,0,3,6,9,12...
- // index=3,则v39=3;index =6,则v39=6;index=7,则v39=6
- {
- v33_isAppPW_index01 = v31_pw_index == 1;// 是否是appPassword[1]字符
- if ( v31_pw_index != 1 )
- v33_isAppPW_index01 = v39 + 1 == v31_pw_index;
- if ( v33_isAppPW_index01 ) // 判断index%3=1的情况 ,即1,4,7,10
- {
- v34_ret = byte_4050; // v34第一次=0x33(51);
- // byte_4050:存放的是base64的table字典字符64+1个
- // byte_4050(字符长度是64+1):!:#$%&()+-*/`~_[]{}?<>,.@^abcdefghijklmnopqrstuvwxyz0123456789\';
- v28_new_base64[v46 + v31_pw_index] = byte_4050[(unsigned __int8)v28_new_base64[v46 + v31_pw_index] | ((unsigned int)v38_char_needTodoBase64 >> 4)];
- v19_v49_256_Rc4_T = &v28_new_base64[v46 + v31_pw_index];
- v29 = 4 * v38_char_needTodoBase64 & 0x3C;// 0x3C =60 ,即111100二进制
- v19_v49_256_Rc4_T[1] = v29;
- if ( v31_pw_index + 1 >= v26_app_password_length )
- goto LABEL_53; // 跳转到程序的倒数第2个Lable
- }
- else // index%3=2的情况 2,5,8,11....
- {
- v35 = v31_pw_index == 2;
- if ( v31_pw_index != 2 )
- v35 = v39 + 2 == v31_pw_index;
- if ( v35 )
- {
- v19_v49_256_Rc4_T = (char *)(v38_char_needTodoBase64 & 0xC0);// 0xC0 =192即11000000二进制,保留最高2bit
- v36 = v46++ + v31_pw_index;
- v28_new_base64[v36] = byte_4050[(unsigned __int8)v28_new_base64[v36] | ((unsigned int)v19_v49_256_Rc4_T >> 6)] ^ 0xF;// 0xf=15 ,即二进制1111。
- // 这里异或好像是对Base64模拟的多余操作
- v29 = (int)&v28_new_base64[v36];
- *(_BYTE *)(v29 + 1) = byte_4050[v38_char_needTodoBase64 & 0x3F];// 0x3f=63 即111111二进制
- }
- }
- }
- else // index/%3 =0 即0,3,6,9...
- {
- v28_new_base64[v46 + v31_pw_index] = byte_4050[(unsigned int)v38_char_needTodoBase64 >> 2] ^ 7;// 7的二进制四111
- // 这里对base64进行了魔改操作
- v19_v49_256_Rc4_T = &v28_new_base64[v46 + v31_pw_index];
- v29 = 16 * v38_char_needTodoBase64 & 0x30;// 0x30=48,即二进制110000bit
- v19_v49_256_Rc4_T[1] = v29;
- if ( v31_pw_index + 1 >= v26_app_password_length )// 最后一位
- {
- v40 = byte_4050[v29];
- *((_WORD *)v19_v49_256_Rc4_T + 1) = 15163;
- goto LABEL_43;
- }
- }
- ++v31_pw_index;
- } // end for if ( v26_app_password_length ) 内部的do
- while ( v31_pw_index < v26_app_password_length );
- } // end if ( v26_strText_length ) 输入密码lenght>0
- // ========这是时RC4-04部分的算法“产生密钥流”
- // v28_new_base64:同时结合if部分逐个对RC4生成的结果做魔改的Base64运算
- //
- //
- //
- while ( 1 )
- {
- if ( v45_by_app_password_length )
- { // v45 是根据输入密码长度计算,比如密码:12345678;v45=0x48u(即78)
- v34_ret = (_BYTE *)(&dword_0 + 1); // v34 =1
- v19_v49_256_Rc4_T = (char *)v44_new_base64_length;
- v41 = &byte_24E8; // v41指向的char* = 0x20(即空格)+"{9*8ga*l!Tn?@#fj'j$\g;;"
- do
- {
- v29 = (unsigned __int8)v28_new_base64[v27++];
- v42 = (unsigned __int8)*v41++;
- if ( v42 != v29 )
- v34_ret = 0;
- }
- while ( v27 < v44_new_base64_length ); // v44 =0x3Fu
- }
- else
- {
- v34_ret = (_BYTE *)(&dword_0 + 1);
- }
- v28_new_base64 = (_BYTE *)(_stack_chk_guard - v50);
- if ( _stack_chk_guard == v50 )
- break;
- LABEL_53:
- v40 = v34_ret[v29];
- v19_v49_256_Rc4_T[2] = 52; // 输入密码:12345678,这里是:wk4.
- LABEL_43:
- v19_v49_256_Rc4_T[1] = v40;
- }
- return (unsigned __int8)v34_ret; // sub_784 方法返回只有这么一个位置。我们侧重分析如何让该方法返回真即可
- }
复制代码
查阅资料syang大神的看雪CTF-变形金刚:
http://blog.syang.xyz/2019/04/kanxue-transformer/
HHHso大神[原创] KCTF 2019 Q1 第二题 有的放矢:
https://bbs.pediy.com/thread-250348-1.htm
经典对称加密RC4分析 :
http://ronpa.top/2018/11/27/%E7%BB%8F%E5%85%B8%E5%AF%B9%E7%A7%B0%E5%8A%A0%E5%AF%86RC4%E5%88%86%E6%9E%90/
用 Java 实现的 Rc4 加密算法(C++):
https://www.cnblogs.com/java-stack/archive/2010/10/25/11952676.html
详解Java中的Base64原理跟z用法:
https://blog.csdn.net/qq_36522306/article/details/80753099
在线工具ASCII码对照表:
https://tool.oschina.net/commons?type=4
在线进制转换器: https://tool.oschina.net/hexconvert/
感受
CTF变形金刚题目设计非常巧妙,通过本例的跟踪分析学到不到逆向与反逆向技术;提升自己对加密算法的理解。
分享是一种美德,牵手是一种生活方式。
|